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Witten and Sander in 1983.

e Simple model to study the geometry and dynamics of
physical systems governed by diffusive laws:

o Coral reef growth
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o Discrete time, set-valued stochastic process {A,}>°, € Z2,
with |A,| = n.

o Ag=1{0}. Ap11 = A, U{y}, where y € 9°“' 4, is sampled
according to pgout 4, (+), the harmonic measure on
8out An-

e For any B C Z?2, let 75 be the first time a simple random
walk visiting B.

e For any y € B, the harmonic measure pp(y) is defined by

pp(y) = lim  Pp(S, = y).
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DLA in Z?

In 1987, Kesten proved that the maximum length of all arms in
A, has polynomial upper bounds:

e When d = 2, limsup,,_,.,n2/3||A,| < C.

e When d > 3, limsup,, . n~2/%||A,| < Cq.
In 1990, he improved the upper bounds to
e When d = 3, limsup,,_,[nlog(n)]~"/2||A,| < Cs

e When d > 3, limsup,, . n~2/(#1]|4,| < Cy.

No non-trivial lower bounds have been proved till present day.
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o Is there a infinite object?
@ Do we know what it locally looks like?

o Wedge: “It is impossible, even with a computer”

Yes
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o In 2017, Benjamini and Yadin revisited this topic. They
“clean up Kesten’s argument”, and generalize the original
result to different types of graphs.

graph condition upper bound reference
transitive of polynomial growth, d > 4 2/d Theorem 5.2
transitive of cubic growth tlog(t) Theorem 5.2
transitive and exponential growth log(t)]* Theorem 5.7
pinched exponential growth log(t)]* Theorem 5.7
non-amenable log(t) Theorem 5.9
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Boundary Conditions?

In 2017, Procaccia and Z studied the DLA model in the upper
half plane with Dirichlet boundary conditions:

o In the upper half plane, the stationary harmonic measure
exists and is non-zero for any (infinite) subset of sub-linear
polynomial horizontal growth.

@ The growth of stationary harmonic measure in the upper
half plane has a Kesten type upper bound, which also leads
to a similar upper bound in the growth of the
corresponding DLA model.

o At each time, the size of DLA model in the upper half
plane has all finite moments.



Harmonic Measure in a wedge

In 2018, we study DLA in a wedge
Wo, 0, = {(m,y) SWAR arctan(y/x) € [91,02]} ,

where —7/2 < 01 < 03 < /2. Le., new particles are added
according to the harmonic measure given by the hitting
probability of a random walk in the wedge starting from
infinity.

Theorem 1 (Procaccia, Rosenthal and Z, 2018)

For a point x € Wy, g,, a set A C Wy, 9,, and y € A define
Ha(z,y) = Pg, 4,(Sr, =y). For every AC Wy, 4, and y € 72,
the following limit, called the harmonic measure of A from
infinity exists

HY (y) == lim Ha(z,y).

|z| =00
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Idea of the proof:

e Starting from radius R, it will take much more than R?
steps for a random walk (in a wedge) to first visit A, which
has a finite radius.

e For two random walks both from radius R, they will with
high probability mix by the first time any of them first hits
A.

MyR
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Harmonic Measure in a wedge

o Difficulty: lack of control over the discrete Green function
in the wedge.

o Alternative approach 1: Uniform spanning forest,
Benjamini.

o Alternative approach 2: Greg Lawler suggested another
approach with coupling over different layers.



A Beurling estimate theorem

For R >0 let Bg = {(x,y) € Z* : 2%+ y? < R?} be the
discrete Fuclidean ball of radius R around the origin and define
Wéi% = W91,92 N Bp.

Theorem 2 (Procaccia, Rosenthal and Z, 2018)

Fiz —7/2 < 01 < 03 < /2. For every € > 0, there exists M € N
and C € (0,00) such that for every r, L € N satisfying r > M
and L/r > M, every R > 0 sufficiently large (depending on €
and L), every connected subset A C Wy, g,, such that

W, 0, C A and that AN 8W0];792 # () and every x € 8W£792

T\ 3567 €
P35, 0, (Tavvglﬂ2 < TBA) <C (f) 202700 " 1og I (1)
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A Beurling estimate theorem

e To find the correct conformal mapping to open the wedge,
we have:

o Option 1: ¢(z) = 527/ (62—61)
L

2m 27
T rf1-02 L9192

Dirichlet and Neumann boundaries meet!



A Beurling estimate theorem

o Option 2: Reflection plus ¢(z) = 2™/ (02=01)

= <




A Beurling estimate theorem

By (continuous) Beurling estimate, the probability of

is of order (4)2@2-71,

Intuition: It is more difficulty for random walk to escape a
sharper wedge.
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Stabilization of DLA in a wedge

Our main result is the stabilization of the DLA in sufficiently
sharp wedges.

Theorem 3 (Procaccia, Rosenthal and Z, 2018)

Assume —m /2 < 01 < Oy < 7/2 satisfy 03 — 01 < 7/4 and fix

a > %. Then Py, g,-almost surely, for every R > 0
sufficiently large, the random sets (A, N BR)n>gra are all the
same. In other words, for all R sufficiently large, none of the
particles (an)n>re added to the system after time R* will attach

to the aggregate inside Wéf 0y

v

This tells us, locally a long time simulation in a wedge will,
with high probability, give the same configuration as in the
infinite time DLA!



Open Problems

Can we prove stabilization of the DLA when 6y — 61 = 7 /47

DLA in a wedge stabilizes when 0y — 01 = 7 /4. l

If we can have the conjecture above, is it possible to use
reflection symmetry of this special angle to have:

DLA in 7Z? stabilizes. l




Open Problems

Let J be an infinite graph. The number of ends of J is defined to
be the supremum on the number of infinite, connected
components of 1\ K, where we run over all finite K C J. Hence,
one can define the number of arms of the DLA as the number of
ends of the graph J = A..

There exists 0y € (0,2m) such that for any 6 € (0,6p), A has
only one arm.




Open Problems

Conjecture 3 is true if one can show the following harder result
on the lower bound of growth rate: Define the growth rate of
(An)n>0, denote gr((An)n>0) by

diam(A,,
ax(An)as) = sup {92 172 oy P2 - o},
n—oo

where diam stands for the diameter of the set in the Euclidean
distance.

The growth rate is Py, g,-almost surely a constant and as 0 — 0,
1t converges to 1.
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Thank you!

Questions?

Remarks?



