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DLA in Z2

Diffusion Limit Aggregation (DLA): first introduced by
Witten and Sander in 1983.

Simple model to study the geometry and dynamics of
physical systems governed by diffusive laws:

Sparse Bacterial growth.

Copper sulfate solution in an electrodeposition cell.

Coral reef growth
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DLA in Z2

Discrete time, set-valued stochastic process {An}∞n=0 ∈ Z2,
with |An| = n.

A0 = {0}. An+1 = An ∪ {y}, where y ∈ ∂outAn is sampled
according to µ∂outAn(·), the harmonic measure on
∂outAn.

For any B ⊂ Z2, let τB be the first time a simple random
walk visiting B.

For any y ∈ B, the harmonic measure µB(y) is defined by

µB(y) = lim
‖x‖→∞

Px(SτB = y).
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DLA in Z2

It is known (Spitzer 1976, Theorem 14.1) that the limit
exists and is summable to one.

Intuitively, µB(y) is the “probability” a random walk
starting from “infinity” first hits y before any other points
in B.

In each step of DLA, run a RW ”from far far away” until it
discovers a new vertex.
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DLA in Z2

In 1987, Kesten proved that the maximum length of all arms in
An has polynomial upper bounds:

When d = 2, lim supn→∞ n
−2/3‖An‖ ≤ C.

When d ≥ 3, lim supn→∞ n
−2/d‖An‖ ≤ Cd.

In 1990, he improved the upper bounds to

When d = 3, lim supn→∞[n log(n)]−1/2‖An‖ ≤ C3

When d > 3, lim supn→∞ n
−2/(d+1)‖An‖ ≤ Cd.

No non-trivial lower bounds have been proved till present day.
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Recent Work on DLA Upper Bounds

In 2017, Benjamini and Yadin revisited this topic. They
“clean up Kesten’s argument”, and generalize the original
result to different types of graphs.

graph condition upper bound reference

transitive of polynomial growth, d ≥ 4 t2/d Theorem 5.2

transitive of cubic growth
√
t log(t) Theorem 5.2

transitive and exponential growth [log(t)]4 Theorem 5.7
pinched exponential growth [log(t)]4 Theorem 5.7

non-amenable log(t) Theorem 5.9
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In 2017, Procaccia and Z studied the DLA model in the upper
half plane with Dirichlet boundary conditions:

In the upper half plane, the stationary harmonic measure
exists and is non-zero for any (infinite) subset of sub-linear
polynomial horizontal growth.

The growth of stationary harmonic measure in the upper
half plane has a Kesten type upper bound, which also leads
to a similar upper bound in the growth of the
corresponding DLA model.

At each time, the size of DLA model in the upper half
plane has all finite moments.
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Harmonic Measure in a wedge

In 2018, we study DLA in a wedge

Wθ1,θ2 =
{

(x, y) ∈ Z2 : arctan(y/x) ∈ [θ1, θ2]
}
,

where −π/2 ≤ θ1 < θ2 ≤ π/2. I.e., new particles are added
according to the harmonic measure given by the hitting
probability of a random walk in the wedge starting from
infinity.

Theorem 1 (Procaccia, Rosenthal and Z, 2018)

For a point x ∈Wθ1,θ2, a set A ⊂Wθ1,θ2, and y ∈ A define
HA(x, y) = Px

θ1,θ2
(SτA = y). For every A ⊂Wθ1,θ2 and y ∈ Z2,

the following limit, called the harmonic measure of A from
infinity exists

H∞A (y) := lim
|x|→∞

HA(x, y).



Harmonic Measure in a wedge

Idea of the proof:

Starting from radius R, it will take much more than R2

steps for a random walk (in a wedge) to first visit A, which
has a finite radius.

For two random walks both from radius R, they will with
high probability mix by the first time any of them first hits
A.

m0R

M0R

R

A
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Harmonic Measure in a wedge

Difficulty: lack of control over the discrete Green function
in the wedge.

Alternative approach 1: Uniform spanning forest,
Benjamini.

Alternative approach 2: Greg Lawler suggested another
approach with coupling over different layers.
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A Beurling estimate theorem

For R > 0 let BR = {(x, y) ∈ Z2 : x2 + y2 < R2} be the
discrete Euclidean ball of radius R around the origin and define
WR
θ1,θ2

= Wθ1,θ2 ∩BR.

Theorem 2 (Procaccia, Rosenthal and Z, 2018)

Fix −π/2 ≤ θ1 < θ2 ≤ π/2. For every ε > 0, there exists M ∈ N
and C ∈ (0,∞) such that for every r, L ∈ N satisfying r ≥M
and L/r ≥M , every R > 0 sufficiently large (depending on ε
and L), every connected subset A ⊂Wθ1,θ2, such that
W r
θ1,θ2

⊂ A and that A ∩ ∂WL
θ1,θ2

6= ∅ and every x ∈ ∂WR
θ1,θ2

Px
θ1,θ2

(
τ∂W r

θ1,θ2
≤ τ∂A

)
≤ C

( r
L

) π
2(θ2−θ1)

−ε
r logL (1)



A Beurling estimate theorem

Use time reversibility to replace the hitting probability
with an escaping probability.

For any x ∈ ∂W r
θ1,θ2

, replacing A by W r
θ1,θ2

plus one of the
two “walls” of the wedge increases the escaping probability.

r
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A Beurling estimate theorem

Idea of the proof (in a continuous context):

To find the correct conformal mapping to open the wedge,
we have:

Option 1: ϕ(z) = z2π/(θ2−θ1)

r

L

r
2π

θ1−θ2 L
2π

θ1−θ2⇒

Dirichlet and Neumann boundaries meet!
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A Beurling estimate theorem

Option 2: Reflection plus ϕ(z) = zπ/(θ2−θ1)

r

L

⇒
r

L

⇒
r

π
θ2−θ1

L
π

θ2−θ1



A Beurling estimate theorem

By (continuous) Beurling estimate, the probability of

r
π

θ2−θ1

L
π

θ2−θ1

is of order
(
r
L

) π
2(θ2−θ1) .

Intuition: It is more difficulty for random walk to escape a
sharper wedge.
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Stabilization of DLA in a wedge

Our main result is the stabilization of the DLA in sufficiently
sharp wedges.

Theorem 3 (Procaccia, Rosenthal and Z, 2018)

Assume −π/2 ≤ θ1 < θ2 ≤ π/2 satisfy θ2 − θ1 < π/4 and fix

a > 2π+4(θ2−θ1)
π−4(θ2−θ1) . Then Pθ1,θ2-almost surely, for every R > 0

sufficiently large, the random sets (An ∩BR)n≥Ra are all the
same. In other words, for all R sufficiently large, none of the
particles (an)n≥Ra added to the system after time Ra will attach
to the aggregate inside WR

θ1,θ2
.

This tells us, locally a long time simulation in a wedge will,
with high probability, give the same configuration as in the
infinite time DLA!



Open Problems

Can we prove stabilization of the DLA when θ2 − θ1 = π/4?

Conjecture 1

DLA in a wedge stabilizes when θ2 − θ1 = π/4.

If we can have the conjecture above, is it possible to use
reflection symmetry of this special angle to have:

Conjecture 2

DLA in Z2 stabilizes.



Open Problems

Let ג be an infinite graph. The number of ends of ג is defined to
be the supremum on the number of infinite, connected
components of ג \K, where we run over all finite K ⊂ .ג Hence,
one can define the number of arms of the DLA as the number of
ends of the graph ג = A∞.

Conjecture 3

There exists θ0 ∈ (0, 2π) such that for any θ ∈ (0, θ0), A∞ has
only one arm.



Open Problems

Conjecture 3 is true if one can show the following harder result
on the lower bound of growth rate: Define the growth rate of
(An)n≥0, denote gr((An)n≥0) by

gr((An)n≥0) = sup

{
β ≥ 1/2 : lim sup

n→∞

diam(An)

nβ
> 0

}
,

where diam stands for the diameter of the set in the Euclidean
distance.

Conjecture 4

The growth rate is Pθ1,θ2-almost surely a constant and as θ → 0,
it converges to 1.
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