Stabilization of DLA in a wedge

Yuan Zhang

Peking University

July, 17th 2018

The 14th Workshop on Markov Processes and Related Topics

Sichuan University

Joint work with: Eviatar B. Procaccia and Ron Rosenthal Special thanks to:

Wedge Antilles

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.

- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.

- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.

• Coral reef growth

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- **Sparse** Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

- Discrete time, set-valued stochastic process $\{A_n\}_{n=0}^{\infty} \in \mathbb{Z}^2$, with $|A_n| = n$.
- $A_0 = \{0\}$. $A_{n+1} = A_n \cup \{y\}$, where $y \in \partial^{out} A_n$ is sampled according to $\mu_{\partial^{out} A_n}(\cdot)$, the **harmonic measure** on $\partial^{out} A_n$.
- For any $B \subset \mathbb{Z}^2$, let τ_B be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_B(y)$ is defined by

$$\mu_B(y) = \lim_{\|x\| \to \infty} P_x(S_{\tau_B} = y).$$

- Discrete time, set-valued stochastic process $\{A_n\}_{n=0}^{\infty} \in \mathbb{Z}^2$, with $|A_n| = n$.
- $A_0 = \{0\}$. $A_{n+1} = A_n \cup \{y\}$, where $y \in \partial^{out} A_n$ is sampled according to $\mu_{\partial^{out} A_n}(\cdot)$, the **harmonic measure** on $\partial^{out} A_n$.
- For any $B \subset \mathbb{Z}^2$, let τ_B be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_B(y)$ is defined by

$$\mu_B(y) = \lim_{\|x\| \to \infty} P_x(S_{\tau_B} = y).$$

- Discrete time, set-valued stochastic process $\{A_n\}_{n=0}^{\infty} \in \mathbb{Z}^2$, with $|A_n| = n$.
- $A_0 = \{0\}$. $A_{n+1} = A_n \cup \{y\}$, where $y \in \partial^{out} A_n$ is sampled according to $\mu_{\partial^{out} A_n}(\cdot)$, the **harmonic measure** on $\partial^{out} A_n$.
- For any $B \subset \mathbb{Z}^2$, let τ_B be the first time a simple random walk visiting B.

• For any $y \in B$, the harmonic measure $\mu_B(y)$ is defined by

$$\mu_B(y) = \lim_{\|x\| \to \infty} P_x(S_{\tau_B} = y).$$

- Discrete time, set-valued stochastic process $\{A_n\}_{n=0}^{\infty} \in \mathbb{Z}^2$, with $|A_n| = n$.
- $A_0 = \{0\}$. $A_{n+1} = A_n \cup \{y\}$, where $y \in \partial^{out} A_n$ is sampled according to $\mu_{\partial^{out} A_n}(\cdot)$, the **harmonic measure** on $\partial^{out} A_n$.
- For any $B \subset \mathbb{Z}^2$, let τ_B be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_B(y)$ is defined by

$$\mu_B(y) = \lim_{\|x\| \to \infty} P_x(S_{\tau_B} = y).$$

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_B(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

In 1987, Kesten proved that the maximum length of all arms in A_n has polynomial upper bounds:

• When d = 2, $\limsup_{n \to \infty} n^{-2/3} ||A_n|| \le C$.

• When $d \ge 3$, $\limsup_{n\to\infty} n^{-2/d} ||A_n|| \le C_d$. In 1990, he improved the upper bounds to

- When d = 3, $\limsup_{n \to \infty} [n \log(n)]^{-1/2} ||A_n|| \le C_3$
- When d > 3, $\limsup_{n \to \infty} n^{-2/(d+1)} ||A_n|| \le C_d$.

In 1987, Kesten proved that the maximum length of all arms in A_n has polynomial upper bounds:

• When d = 2, $\limsup_{n \to \infty} n^{-2/3} ||A_n|| \le C$.

• When $d \ge 3$, $\limsup_{n \to \infty} n^{-2/d} ||A_n|| \le C_d$.

In 1990, he improved the upper bounds to

- When d = 3, $\limsup_{n \to \infty} [n \log(n)]^{-1/2} ||A_n|| \le C_3$
- When d > 3, $\limsup_{n \to \infty} n^{-2/(d+1)} ||A_n|| \le C_d$.

In 1987, Kesten proved that the maximum length of all arms in A_n has polynomial upper bounds:

- When d = 2, $\limsup_{n \to \infty} n^{-2/3} ||A_n|| \le C$.
- When $d \ge 3$, $\limsup_{n \to \infty} n^{-2/d} ||A_n|| \le C_d$.

In 1990, he improved the upper bounds to

• When d = 3, $\limsup_{n \to \infty} [n \log(n)]^{-1/2} ||A_n|| \le C_3$

• When d > 3, $\limsup_{n \to \infty} n^{-2/(d+1)} ||A_n|| \le C_d$.

In 1987, Kesten proved that the maximum length of all arms in A_n has polynomial upper bounds:

- When d = 2, $\limsup_{n \to \infty} n^{-2/3} ||A_n|| \le C$.
- When $d \ge 3$, $\limsup_{n \to \infty} n^{-2/d} ||A_n|| \le C_d$.

In 1990, he improved the upper bounds to

- When d = 3, $\limsup_{n \to \infty} [n \log(n)]^{-1/2} ||A_n|| \le C_3$
- When d > 3, $\limsup_{n \to \infty} n^{-2/(d+1)} ||A_n|| \le C_d$.

In 1987, Kesten proved that the maximum length of all arms in A_n has polynomial upper bounds:

- When d = 2, $\limsup_{n \to \infty} n^{-2/3} ||A_n|| \le C$.
- When $d \ge 3$, $\limsup_{n \to \infty} n^{-2/d} ||A_n|| \le C_d$.

In 1990, he improved the upper bounds to

- When d = 3, $\limsup_{n \to \infty} [n \log(n)]^{-1/2} ||A_n|| \le C_3$
- When d > 3, $\limsup_{n \to \infty} n^{-2/(d+1)} ||A_n|| \le C_d$.

• Is there a infinite object?

Yes

- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

• Is there a infinite object?

Yes

- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

• Is there a infinite object?

Yes No

- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

• Is there a infinite object?

Yes No

- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

Recent Work on DLA Upper Bounds

• In 2017, Benjamini and Yadin revisited this topic. They "clean up Kesten's argument", and generalize the original result to different types of graphs.

transitive of polynomial growth, $d \ge 4$	
transitive of cubic growth	Theorem 5.2
transitive and exponential growth	Theorem 5.7
	Theorem 5.7

Recent Work on DLA Upper Bounds

• In 2017, Benjamini and Yadin revisited this topic. They "clean up Kesten's argument", and generalize the original result to different types of graphs.

graph condition	upper bound	reference
transitive of polynomial growth, $d \ge 4$	$t^{2/d}$	Theorem 5.2
transitive of cubic growth	$\sqrt{t \log(t)}$	Theorem 5.2
transitive and exponential growth	$[\log(t)]^4$	Theorem 5.7
pinched exponential growth	$[\log(t)]^4$	Theorem 5.7
non-amenable	$\log(t)$	Theorem 5.9

For many physical systems, it makes more sense to consider boundary conditions of the space we can grow:

For many physical systems, it makes more sense to consider boundary conditions of the space we can grow:

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

In 2018, we study DLA in a wedge

$$W_{\theta_1,\theta_2} = \left\{ (x,y) \in \mathbb{Z}^2 : \arctan(y/x) \in [\theta_1,\theta_2] \right\} ,$$

where $-\pi/2 \leq \theta_1 < \theta_2 \leq \pi/2$. I.e., new particles are added according to the harmonic measure given by the hitting probability of a random walk **in the wedge** starting from infinity.

Theorem 1 (Procaccia, Rosenthal and Z, 2018)

For a point $x \in W_{\theta_1,\theta_2}$, a set $A \subset W_{\theta_1,\theta_2}$, and $y \in A$ define $\mathcal{H}_A(x,y) = \mathbf{P}^x_{\theta_1,\theta_2}(S_{\tau_A} = y)$. For every $A \subset W_{\theta_1,\theta_2}$ and $y \in \mathbb{Z}^2$, the following limit, called the harmonic measure of A from infinity exists

$$\mathcal{H}^{\infty}_{A}(y) := \lim_{|x| \to \infty} \mathcal{H}_{A}(x, y).$$

Idea of the proof:

- Starting from radius R, it will take much more than R^2 steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius *R*, they will with high probability mix by the first time any of them first hits *A*.

Idea of the proof:

- Starting from radius R, it will take much more than R^2 steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius *R*, they will with high probability mix by the first time any of them first hits *A*.

Idea of the proof:

- Starting from radius R, it will take much more than R^2 steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius *R*, they will with high probability mix by the first time any of them first hits *A*.

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

For R > 0 let $B_R = \{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 < R^2\}$ be the discrete Euclidean ball of radius R around the origin and define $W^R_{\theta_1,\theta_2} = W_{\theta_1,\theta_2} \cap B_R$.

Theorem 2 (Procaccia, Rosenthal and Z, 2018)

 $Fix - \pi/2 \leq \theta_1 < \theta_2 \leq \pi/2. \text{ For every } \epsilon > 0, \text{ there exists } M \in \mathbb{N}$ and $C \in (0, \infty)$ such that for every $r, L \in \mathbb{N}$ satisfying $r \geq M$ and $L/r \geq M$, every R > 0 sufficiently large (depending on ϵ and L), every connected subset $A \subset W_{\theta_1,\theta_2}$, such that $W_{\theta_1,\theta_2}^r \subset A$ and that $A \cap \partial W_{\theta_1,\theta_2}^L \neq \emptyset$ and every $x \in \partial W_{\theta_1,\theta_2}^R$ $\mathbf{P}_{\theta_1,\theta_2}^x \left(\tau_{\partial W_{\theta_1,\theta_2}^r} \leq \tau_{\partial A} \right) \leq C \left(\frac{r}{T} \right)^{\frac{\pi}{2(\theta_2 - \theta_1)} - \epsilon} r \log L$ (1)

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W^r_{\theta_1,\theta_2}$, replacing A by $W^r_{\theta_1,\theta_2}$ plus one of the two "walls" of the wedge increases the escaping probability.

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W^r_{\theta_1,\theta_2}$, replacing A by $W^r_{\theta_1,\theta_2}$ plus one of the two "walls" of the wedge increases the escaping probability.

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W^r_{\theta_1,\theta_2}$, replacing A by $W^r_{\theta_1,\theta_2}$ plus one of the two "walls" of the wedge increases the escaping probability.

Idea of the proof (in a continuous context):

• To find the correct conformal mapping to open the wedge, we have:

Idea of the proof (in a continuous context):

- To find the correct conformal mapping to open the wedge, we have:
 - Option 1: $\varphi(z) = z^{2\pi/(\theta_2 \theta_1)}$

- To find the correct conformal mapping to open the wedge, we have:

- To find the correct conformal mapping to open the wedge, we have:
 - Option 1: $\varphi(z) = z^{2\pi/(\theta_2 \theta_1)}$

• Option 2: Reflection plus $\varphi(z)=z^{\pi/(\theta_2-\theta_1)}$

By (continuous) Beurling estimate, the probability of

is of order $\left(\frac{r}{L}\right)^{\frac{\pi}{2(\theta_2-\theta_1)}}$.

Intuition: It is more difficulty for random walk to escape a sharper wedge.

Stabilization of DLA in a wedge

Stabilization of DLA in a wedge

Stabilization of DLA in a wedge

Our main result is the stabilization of the DLA in sufficiently sharp wedges.

Theorem 3 (Procaccia, Rosenthal and Z, 2018)

Assume $-\pi/2 \leq \theta_1 < \theta_2 \leq \pi/2$ satisfy $\theta_2 - \theta_1 < \pi/4$ and fix $a > \frac{2\pi + 4(\theta_2 - \theta_1)}{\pi - 4(\theta_2 - \theta_1)}$. Then $\mathbb{P}_{\theta_1, \theta_2}$ -almost surely, for every R > 0sufficiently large, the random sets $(A_n \cap B_R)_{n \geq R^a}$ are all the same. In other words, for all R sufficiently large, none of the particles $(a_n)_{n \geq R^a}$ added to the system after time R^a will attach to the aggregate inside $W^R_{\theta_1, \theta_2}$.

This tells us, locally a long time simulation in a wedge will, with high probability, give the same configuration as in the infinite time DLA!

Open Problems

Can we prove stabilization of the DLA when $\theta_2 - \theta_1 = \pi/4$?

Conjecture 1

DLA in a wedge stabilizes when $\theta_2 - \theta_1 = \pi/4$.

If we can have the conjecture above, is it possible to use reflection symmetry of this special angle to have:

Conjecture 2

DLA in \mathbb{Z}^2 stabilizes.

Let \exists be an infinite graph. The number of ends of \exists is defined to be the supremum on the number of infinite, connected components of $\exists \setminus K$, where we run over all finite $K \subset \exists$. Hence, one can define the number of arms of the DLA as the number of ends of the graph $\exists = A_{\infty}$.

Conjecture 3

There exists $\theta_0 \in (0, 2\pi)$ such that for any $\theta \in (0, \theta_0)$, A_{∞} has only one arm.

Open Problems

Conjecture 3 is true if one can show the following harder result on the lower bound of growth rate: Define the growth rate of $(A_n)_{n\geq 0}$, denote $\operatorname{gr}((A_n)_{n\geq 0})$ by

$$\operatorname{gr}((A_n)_{n\geq 0}) = \sup\left\{\beta \geq 1/2 : \limsup_{n \to \infty} \frac{\operatorname{diam}(A_n)}{n^{\beta}} > 0\right\},\$$

where diam stands for the diameter of the set in the Euclidean distance.

Conjecture 4

The growth rate is $\mathbb{P}_{\theta_1,\theta_2}$ -almost surely a constant and as $\theta \to 0$, it converges to 1.

Related Works:

- E. Procaccia and Y. Zhang, Stationary Harmonic Measure and DLA in the Upper half Plane, *arXiv*: 1711.01011
- E. Procaccia and Y. Zhang, On sets of zero stationary harmonic measure *arXiv*: 1711.01013
- E. Procaccia, R. Rosenthal, and Y. Zhang, Stabilization of DLA in a wedge, *arXiv*: 1804.04236
- E. B. Procaccia, J. Ye, and Y. Zhang, Convergence of two dimensional DLA from a long line segment, near completion
- E. B. Procaccia and Y. Zhang, Two dimensional stationary DLA, in preparation

Remarks?