Stabilization of DLA in a wedge

Yuan Zhang

Peking University
July, 17th 2018
The 14th Workshop on
Markov Processes and Related Topics
Sichuan University

Joint work with:
Eviatar B. Procaccia and
Ron Rosenthal

Special thanks to:
Wedge Antilles

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.

- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.

- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.

- Coral reef growth

DLA in \mathbb{Z}^{2}

- Diffusion Limit Aggregation (DLA): first introduced by Witten and Sander in 1983.
- Simple model to study the geometry and dynamics of physical systems governed by diffusive laws:
- Sparse Bacterial growth.
- Copper sulfate solution in an electrodeposition cell.
- Coral reef growth

DLA in \mathbb{Z}^{2}

- Discrete time, set-valued stochastic process $\left\{A_{n}\right\}_{n=0}^{\infty} \in \mathbb{Z}^{2}$, with $\left|A_{n}\right|=n$.
- $A_{0}=\{0\} . A_{n+1}=A_{n} \cup\{y\}$, where $y \in \partial^{\text {out }} A_{n}$ is sampled according to $\mu_{\partial^{\text {out }} A_{n}}(\cdot)$, the harmonic measure on $\partial^{o u t} A_{n}$.
- For any $B \subset \mathbb{Z}^{2}$, let τ_{B} be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_{B}(y)$ is defined by

DLA in \mathbb{Z}^{2}

- Discrete time, set-valued stochastic process $\left\{A_{n}\right\}_{n=0}^{\infty} \in \mathbb{Z}^{2}$, with $\left|A_{n}\right|=n$.
- $A_{0}=\{0\} . A_{n+1}=A_{n} \cup\{y\}$, where $y \in \partial^{\text {out }} A_{n}$ is sampled according to $\mu_{\partial^{\text {out }} A_{n}}(\cdot)$, the harmonic measure on $\partial^{\text {out }} A_{n}$.
- For any $B \subset \mathbb{Z}^{2}$, let τ_{B} be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_{B}(y)$ is defined by

DLA in \mathbb{Z}^{2}

- Discrete time, set-valued stochastic process $\left\{A_{n}\right\}_{n=0}^{\infty} \in \mathbb{Z}^{2}$, with $\left|A_{n}\right|=n$.
- $A_{0}=\{0\} . A_{n+1}=A_{n} \cup\{y\}$, where $y \in \partial^{\text {out }} A_{n}$ is sampled according to $\mu_{\text {дout }_{A_{n}}}(\cdot)$, the harmonic measure on $\partial^{\text {out }} A_{n}$.
- For any $B \subset \mathbb{Z}^{2}$, let τ_{B} be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_{B}(y)$ is defined by

DLA in \mathbb{Z}^{2}

- Discrete time, set-valued stochastic process $\left\{A_{n}\right\}_{n=0}^{\infty} \in \mathbb{Z}^{2}$, with $\left|A_{n}\right|=n$.
- $A_{0}=\{0\} . A_{n+1}=A_{n} \cup\{y\}$, where $y \in \partial^{\text {out }} A_{n}$ is sampled according to $\mu_{\text {дout }_{A_{n}}}(\cdot)$, the harmonic measure on $\partial^{\text {out }} A_{n}$.
- For any $B \subset \mathbb{Z}^{2}$, let τ_{B} be the first time a simple random walk visiting B.
- For any $y \in B$, the harmonic measure $\mu_{B}(y)$ is defined by

$$
\mu_{B}(y)=\lim _{\|x\| \rightarrow \infty} P_{x}\left(S_{\tau_{B}}=y\right)
$$

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

- It is known (Spitzer 1976, Theorem 14.1) that the limit exists and is summable to one.
- Intuitively, $\mu_{B}(y)$ is the "probability" a random walk starting from "infinity" first hits y before any other points in B.
- In each step of DLA, run a RW "from far far away" until it discovers a new vertex.

DLA in \mathbb{Z}^{2}

In 1987, Kesten proved that the maximum length of all arms in A_{n} has polynomial upper bounds:

In 1990, he improved the upper bounds to

No non-trivial lower bounds have been proved till present day.

DLA in \mathbb{Z}^{2}

In 1987, Kesten proved that the maximum length of all arms in A_{n} has polynomial upper bounds:

- When $d=2, \lim \sup _{n \rightarrow \infty} n^{-2 / 3}\left\|A_{n}\right\| \leq C$.
- When $d \geq 3$, $\lim \sup _{n \rightarrow \infty} n^{-2 / d}\left\|A_{n}\right\| \leq C_{d}$. In 1990, he improved the upper bounds to

DLA in \mathbb{Z}^{2}

In 1987, Kesten proved that the maximum length of all arms in A_{n} has polynomial upper bounds:

- When $d=2, \lim \sup _{n \rightarrow \infty} n^{-2 / 3}\left\|A_{n}\right\| \leq C$.
- When $d \geq 3$, limsup $\operatorname{sum}_{n \rightarrow \infty} n^{-2 / d}\left\|A_{n}\right\| \leq C_{d}$.

In 1990, he improved the upper bounds to

DLA in \mathbb{Z}^{2}

In 1987, Kesten proved that the maximum length of all arms in A_{n} has polynomial upper bounds:

- When $d=2, \lim \sup _{n \rightarrow \infty} n^{-2 / 3}\left\|A_{n}\right\| \leq C$.
- When $d \geq 3$, limsup $\operatorname{sum}_{n \rightarrow \infty} n^{-2 / d}\left\|A_{n}\right\| \leq C_{d}$.

In 1990, he improved the upper bounds to

- When $d=3, \lim \sup _{n \rightarrow \infty}[n \log (n)]^{-1 / 2}\left\|A_{n}\right\| \leq C_{3}$
- When $d>3$, limsupp $\sup _{n \rightarrow \infty} n^{-2 /(d+1)}\left\|A_{n}\right\| \leq C_{d}$.

DLA in \mathbb{Z}^{2}

In 1987, Kesten proved that the maximum length of all arms in A_{n} has polynomial upper bounds:

- When $d=2, \lim \sup _{n \rightarrow \infty} n^{-2 / 3}\left\|A_{n}\right\| \leq C$.
- When $d \geq 3$, limsup $\operatorname{sum}_{n \rightarrow \infty} n^{-2 / d}\left\|A_{n}\right\| \leq C_{d}$.

In 1990, he improved the upper bounds to

- When $d=3$, limsup $\lim _{n \rightarrow \infty}[n \log (n)]^{-1 / 2}\left\|A_{n}\right\| \leq C_{3}$
- When $d>3, \lim \sup _{n \rightarrow \infty} n^{-2 /(d+1)}\left\|A_{n}\right\| \leq C_{d}$.

No non-trivial lower bounds have been proved till present day.

DLA in \mathbb{Z}^{2}

- Is there a infinite object?
- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

DLA in \mathbb{Z}^{2}

- Is there a infinite object?
- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

DLA in \mathbb{Z}^{2}

- Is there a infinite object?
- Do we know what it locally looks like?

Yes
No

- Wedge: "It is impossible, even with a computer"

DLA in \mathbb{Z}^{2}

- Is there a infinite object?

Yes

- Do we know what it locally looks like?
- Wedge: "It is impossible, even with a computer"

Recent Work on DLA Upper Bounds

- In 2017, Benjamini and Yadin revisited this topic. They "clean up Kesten's argument", and generalize the original result to different types of graphs.

graph condition	upper bound	reference
transitive of polynomial growth, $d \geq 4$	$t^{2 / d}$	Theorem 5.2
transitive of cubic growth	$\sqrt{t \log (t)}$	Theorem 5.2
transitive and exponential growth	$[\log (t)]^{4}$	Theorem 5.7
pinched exponential growth	$[\log (t)]^{4}$	Theorem 5.7
non-amenable	$\log (t)$	Theorem 5.9

Recent Work on DLA Upper Bounds

- In 2017, Benjamini and Yadin revisited this topic. They "clean up Kesten's argument", and generalize the original result to different types of graphs.

graph condition	upper bound	reference
transitive of polynomial growth, $d \geq 4$	$t^{2 / d}$	Theorem 5.2
transitive of cubic growth	$\sqrt{t \log (t)}$	Theorem 5.2
transitive and exponential growth	$[\log (t)]^{4}$	Theorem 5.7
pinched exponential growth	$[\log (t)]^{4}$	Theorem 5.7
non-amenable	$\log (t)$	Theorem 5.9

Boundary Conditions?

For many physical systems, it makes more sense to consider boundary conditions of the space we can grow:

Boundary Conditions?

For many physical systems, it makes more sense to consider boundary conditions of the space we can grow:

Boundary Conditions?

In 2017, Procaccia and Z studied the DLA model in the upper half plane with Dirichlet boundary conditions:

Boundary Conditions?

In 2017, Procaccia and Z studied the DLA model in the upper half plane with Dirichlet boundary conditions:

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

Boundary Conditions?

In 2017, Procaccia and Z studied the DLA model in the upper half plane with Dirichlet boundary conditions:

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

Boundary Conditions?

In 2017, Procaccia and Z studied the DLA model in the upper half plane with Dirichlet boundary conditions:

- In the upper half plane, the stationary harmonic measure exists and is non-zero for any (infinite) subset of sub-linear polynomial horizontal growth.
- The growth of stationary harmonic measure in the upper half plane has a Kesten type upper bound, which also leads to a similar upper bound in the growth of the corresponding DLA model.
- At each time, the size of DLA model in the upper half plane has all finite moments.

Harmonic Measure in a wedge

In 2018, we study DLA in a wedge

$$
W_{\theta_{1}, \theta_{2}}=\left\{(x, y) \in \mathbb{Z}^{2}: \arctan (y / x) \in\left[\theta_{1}, \theta_{2}\right]\right\}
$$

where $-\pi / 2 \leq \theta_{1}<\theta_{2} \leq \pi / 2$. I.e., new particles are added according to the harmonic measure given by the hitting probability of a random walk in the wedge starting from infinity.

Theorem 1 (Procaccia, Rosenthal and Z, 2018)

For a point $x \in W_{\theta_{1}, \theta_{2}}$, a set $A \subset W_{\theta_{1}, \theta_{2}}$, and $y \in A$ define $\mathcal{H}_{A}(x, y)=\mathbf{P}_{\theta_{1}, \theta_{2}}^{x}\left(S_{\tau_{A}}=y\right)$. For every $A \subset W_{\theta_{1}, \theta_{2}}$ and $y \in \mathbb{Z}^{2}$, the following limit, called the harmonic measure of A from infinity exists

$$
\mathcal{H}_{A}^{\infty}(y):=\lim _{|x| \rightarrow \infty} \mathcal{H}_{A}(x, y)
$$

Harmonic Measure in a wedge

Idea of the proof:

- Starting from radius R, it will take much more than R^{2} steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius R, they will with high probability mix by the first time any of them first hits A.

Harmonic Measure in a wedge

Idea of the proof:

- Starting from radius R, it will take much more than R^{2} steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius R, they will with high probability mix by the first time any of them first hits A.

Harmonic Measure in a wedge

Idea of the proof:

- Starting from radius R, it will take much more than R^{2} steps for a random walk (in a wedge) to first visit A, which has a finite radius.
- For two random walks both from radius R, they will with high probability mix by the first time any of them first hits A.

Harmonic Measure in a wedge

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

Harmonic Measure in a wedge

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

Harmonic Measure in a wedge

- Difficulty: lack of control over the discrete Green function in the wedge.
- Alternative approach 1: Uniform spanning forest, Benjamini.
- Alternative approach 2: Greg Lawler suggested another approach with coupling over different layers.

A Beurling estimate theorem

For $R>0$ let $B_{R}=\left\{(x, y) \in \mathbb{Z}^{2}: x^{2}+y^{2}<R^{2}\right\}$ be the discrete Euclidean ball of radius R around the origin and define $W_{\theta_{1}, \theta_{2}}^{R}=W_{\theta_{1}, \theta_{2}} \cap B_{R}$.

Theorem 2 (Procaccia, Rosenthal and Z, 2018)

Fix $-\pi / 2 \leq \theta_{1}<\theta_{2} \leq \pi / 2$. For every $\epsilon>0$, there exists $M \in \mathbb{N}$ and $C \in(0, \infty)$ such that for every $r, L \in \mathbb{N}$ satisfying $r \geq M$ and $L / r \geq M$, every $R>0$ sufficiently large (depending on ϵ and L), every connected subset $A \subset W_{\theta_{1}, \theta_{2}}$, such that $W_{\theta_{1}, \theta_{2}}^{r} \subset A$ and that $A \cap \partial W_{\theta_{1}, \theta_{2}}^{L} \neq \emptyset$ and every $x \in \partial W_{\theta_{1}, \theta_{2}}^{R}$

$$
\begin{equation*}
\mathbf{P}_{\theta_{1}, \theta_{2}}^{x}\left(\tau_{\partial W_{\theta_{1}, \theta_{2}}^{r}} \leq \tau_{\partial A}\right) \leq C\left(\frac{r}{L}\right)^{\frac{\pi}{2\left(\theta_{2}-\theta_{1}\right)}-\epsilon} r \log L \tag{1}
\end{equation*}
$$

A Beurling estimate theorem

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W_{\theta_{1}, \theta_{2}}^{r}$, replacing A by $W_{\theta_{1}, \theta_{2}}^{r}$ plus one of the two "walls" of the wedge increases the escaping probability.

A Beurling estimate theorem

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W_{\theta_{1}, \theta_{2}}^{r}$, replacing A by $W_{\theta_{1}, \theta_{2}}^{r}$ plus one of the two "walls" of the wedge increases the escaping probability.

A Beurling estimate theorem

- Use time reversibility to replace the hitting probability with an escaping probability.
- For any $x \in \partial W_{\theta_{1}, \theta_{2}}^{r}$, replacing A by $W_{\theta_{1}, \theta_{2}}^{r}$ plus one of the two "walls" of the wedge increases the escaping probability.

A Beurling estimate theorem

Idea of the proof (in a continuous context):

- To find the correct conformal mapping to open the wedge, we have:
- Option 1: $\varphi(z)=z^{2 \pi /\left(\theta_{2}-\theta_{1}\right)}$

Dirichlet and Neumann boundaries meet!

A Beurling estimate theorem

Idea of the proof (in a continuous context):

- To find the correct conformal mapping to open the wedge, we have:
- Option 1: $\varphi(z)=z^{2 \pi /\left(\theta_{2}-\theta_{1}\right)}$

Dirichlet and Neumann boundaries meet!

A Beurling estimate theorem

- To find the correct conformal mapping to open the wedge, we have:
- Option 1: $\varphi(z)=z^{2 \pi /\left(\theta_{2}-\theta_{1}\right)}$

Dirichlet and Neumann boundaries meet!

A Beurling estimate theorem

- To find the correct conformal mapping to open the wedge, we have:
- Option 1: $\varphi(z)=z^{2 \pi /\left(\theta_{2}-\theta_{1}\right)}$

Dirichlet and Neumann boundaries meet!

A Beurling estimate theorem

- Option 2: Reflection plus $\varphi(z)=z^{\pi /\left(\theta_{2}-\theta_{1}\right)}$

A Beurling estimate theorem

By (continuous) Beurling estimate, the probability of

is of order $\left(\frac{r}{L}\right)^{\frac{\pi}{2\left(\theta_{2}-\theta_{1}\right)}}$.
Intuition: It is more difficulty for random walk to escape a sharper wedge.

Stabilization of DLA in a wedge

Stabilization of DLA in a wedge

Stabilization of DLA in a wedge

Our main result is the stabilization of the DLA in sufficiently sharp wedges.

Theorem 3 (Procaccia, Rosenthal and $\mathrm{Z}, 2018$)
Assume $-\pi / 2 \leq \theta_{1}<\theta_{2} \leq \pi / 2$ satisfy $\theta_{2}-\theta_{1}<\pi / 4$ and fix $a>\frac{2 \pi+4\left(\theta_{2}-\theta_{1}\right)}{\pi-4\left(\theta_{2}-\theta_{1}\right)}$. Then $\mathbb{P}_{\theta_{1}, \theta_{2}}$-almost surely, for every $R>0$ sufficiently large, the random sets $\left(A_{n} \cap B_{R}\right)_{n \geq R^{a}}$ are all the same. In other words, for all R sufficiently large, none of the particles $\left(a_{n}\right)_{n \geq R^{a}}$ added to the system after time R^{a} will attach to the aggregate inside $W_{\theta_{1}, \theta_{2}}^{R}$.

This tells us, locally a long time simulation in a wedge will, with high probability, give the same configuration as in the infinite time DLA!

Open Problems

Can we prove stabilization of the DLA when $\theta_{2}-\theta_{1}=\pi / 4$?
Conjecture 1
$D L A$ in a wedge stabilizes when $\theta_{2}-\theta_{1}=\pi / 4$.
If we can have the conjecture above, is it possible to use reflection symmetry of this special angle to have:

Conjecture 2

$D L A$ in \mathbb{Z}^{2} stabilizes.

Open Problems

Let I be an infinite graph. The number of ends of \beth is defined to be the supremum on the number of infinite, connected components of $\beth \backslash K$, where we run over all finite $K \subset \beth$. Hence, one can define the number of arms of the DLA as the number of ends of the graph $\beth=A_{\infty}$.

Conjecture 3

There exists $\theta_{0} \in(0,2 \pi)$ such that for any $\theta \in\left(0, \theta_{0}\right), A_{\infty}$ has only one arm.

Open Problems

Conjecture 3 is true if one can show the following harder result on the lower bound of growth rate: Define the growth rate of $\left(A_{n}\right)_{n \geq 0}$, denote $\operatorname{gr}\left(\left(A_{n}\right)_{n \geq 0}\right)$ by

$$
\operatorname{gr}\left(\left(A_{n}\right)_{n \geq 0}\right)=\sup \left\{\beta \geq 1 / 2: \limsup _{n \rightarrow \infty} \frac{\operatorname{diam}\left(A_{n}\right)}{n^{\beta}}>0\right\}
$$

where diam stands for the diameter of the set in the Euclidean distance.

Conjecture 4

The growth rate is $\mathbb{P}_{\theta_{1}, \theta_{2}}$-almost surely a constant and as $\theta \rightarrow 0$, it converges to 1 .

Related Works:

E. Procaccia and Y. Zhang, Stationary Harmonic Measure and DLA in the Upper half Plane, arXiv: 1711.01011

目 E. Procaccia and Y. Zhang, On sets of zero stationary harmonic measure arXiv: 1711.01013

E E. Procaccia, R. Rosenthal, and Y. Zhang, Stabilization of DLA in a wedge, arXiv: 1804.04236

目 E. B. Procaccia, J. Ye, and Y. Zhang, Convergence of two dimensional DLA from a long line segment, near completion
E. B. Procaccia and Y. Zhang, Two dimensional stationary DLA, in preparation

Thank you!
 Questions?

Remarks?

